Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies.

نویسندگان

  • Yanjun Li
  • Ranjan K Dash
  • Jaeyeon Kim
  • Gerald M Saidel
  • Marco E Cabrera
چکیده

Skeletal muscle can maintain ATP concentration constant during the transition from rest to exercise, whereas metabolic reaction rates may increase substantially. Among the key regulatory factors of skeletal muscle energy metabolism during exercise, the dynamics of cytosolic and mitochondrial NADH and NAD+ have not been characterized. To quantify these regulatory factors, we have developed a physiologically based computational model of skeletal muscle energy metabolism. This model integrates transport and reaction fluxes in distinct capillary, cytosolic, and mitochondrial domains and investigates the roles of mitochondrial NADH/NAD+ transport (shuttling) activity and muscle glycogen concentration (stores) during moderate intensity exercise (60% maximal O2 consumption). The underlying hypothesis is that the cytosolic redox state (NADH/NAD+) is much more sensitive to a metabolic disturbance in contracting skeletal muscle than the mitochondrial redox state. This hypothesis was tested by simulating the dynamic metabolic responses of skeletal muscle to exercise while altering the transport rate of reducing equivalents (NADH and NAD+) between cytosol and mitochondria and muscle glycogen stores. Simulations with optimal parameter estimates showed good agreement with the available experimental data from muscle biopsies in human subjects. Compared with these simulations, a 20% increase (or approximately 20% decrease) in mitochondrial NADH/NAD+ shuttling activity led to an approximately 70% decrease (or approximately 3-fold increase) in cytosolic redox state and an approximately 35% decrease (or approximately 25% increase) in muscle lactate level. Doubling (or halving) muscle glycogen concentration resulted in an approximately 50% increase (or approximately 35% decrease) in cytosolic redox state and an approximately 30% increase (or approximately 25% decrease) in muscle lactate concentration. In both cases, changes in mitochondrial redox state were minimal. In conclusion, the model simulations of exercise response are consistent with the hypothesis that mitochondrial NADH/NAD+ shuttling activity and muscle glycogen stores affect primarily the cytosolic redox state. Furthermore, muscle lactate production is regulated primarily by the cytosolic redox state.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Time of Aerobic Exercise in the Light-dark Cycle on Glycemic Control, SIRT1 Protein Expression, and NAD+/NADH Ratio in Skeletal Muscle of Type 2 Diabetes Model Mice

Introduction: Mitochondrial function is regulated by the dark-light cycle under physiological and pathological conditions. Time-dependent exercise interventions may affect metabolic health in diabetic patients by regulating hyperglycemia. However, limited data are available about the correlation between the time of exercise and the regulation of muscle circadian rhythm in diabetes conditions. T...

متن کامل

Transgenic models--a scientific tool to understand exercise-induced metabolism: the regulatory role of AMPK (5'-AMP-activated protein kinase) in glucose transport and glycogen synthase activity in skeletal muscle.

The AMPK (5'AMP-activated protein kinase) is becoming recognized as a critical regulator of energy metabolism. However, many of these effects in muscle metabolism have been ascribed to AMPK based on the use of the unspecific activator AICAR (5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside). Using mouse models in which AMPK activity has been specifically blocked (kinase dead) or knocked o...

متن کامل

A Review of the Role of Carbohydrates in the Sports Nutrition of Soccer Players

Background & Aims: Soccer is a very dynamic and fast team game with a richness of movement, which is in the group of multi-structured sports games; Soccer is a sport characterized by numerous, complex, and dynamic kinematics activities with rotational or non-rotational movements (1). In this sport, a high level of points can be achieved only in planned training conditions (2). Sports scientists...

متن کامل

REVIEWS Intracellular Signal for Skeletal Muscle Adaptation NAD /NADH and skeletal muscle mitochondrial adaptations to exercise

White AT, Schenk S. NAD /NADH and skeletal muscle mitochondrial adaptations to exercise. Am J Physiol Endocrinol Metab 303: E308–E321, 2012. First published March 27, 2012; doi:10.1152/ajpendo.00054.2012.—The pyridine nucleotides, NAD and NADH, are coenzymes that provide oxidoreductive power for the generation of ATP by mitochondria. In skeletal muscle, exercise perturbs the levels of NAD , NAD...

متن کامل

Responses of Muscle Mitochondrial Function to Physical Activity: A Literature Review

Skeletal muscles play an active role in regulating the metabolic homeostasis through their ability for relating to adipose tissue and endocrine hormones. Contraction of the skeletal muscle leads to increased release of several myokines, such as irisin, which is able to interact with the adipose tissue. Physical activity promotes the irisin mechanism by augmenting the peroxisomes (PGC1-α) in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 296 1  شماره 

صفحات  -

تاریخ انتشار 2009